On periodic discrete spline interpolation: Quintic and biquintic cases

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Quintic Spline Interpolation

Deboor, C. , A Practical Guide to splines, Applied Mathematical Science, Vol. 27 Springer Verlag, New York, 1979. Hall, C. A. and Meyer, W. W. , J. Approximation Theory, 16(1976), pp. 105-122. Howel, G. and Verma, A. K. , Best Error Bond of Quartic Spline Interpolation, J. Appron Theory 58 (1989), 58-67. Davis, P. J. , Interpolation and approximation. New Yrok, 1961. Agrawal, R. P. and Wong, P....

متن کامل

C Quintic Spline Interpolation Over Tetrahedral Partitions

We discuss the implementation of a C quintic superspline method for interpolating scattered data in IR based on a modification of Alfeld’s generalization of the Clough-Tocher scheme described by Lai and LeMéhauté [4]. The method has been implemented in MATLAB, and we test for the accuracy of reproduction on a basis of quintic polynomials. We present numerical evidences that when the partition i...

متن کامل

C 1 Quintic Spline Interpolation over Tetrahedral Partitions

We use C 1 quintic superspline functions to interpolate any given scattered data. The space of C 1 quintic superspline functions is introduced in Lai and LeMehaute'99] and is an improvement of the Alfeld scheme of 3D scattered data interpolation. We have implemented the spline space in MATLAB and tested for the accuracy of reproduction of all quintic polynomials. We present some numerical evide...

متن کامل

The singular cases for -spline interpolation

We derive a natural extension of Boehm's free-form y-spline, the G* interpolating y-spline. Primarily, the conditions under which singularities in the spline formulation occur are investigated. Also, the effect that these singularities have on the interpolant are studied. Comparisons are made to the behavior of the interpolating v-spline.

متن کامل

On bounding spline interpolation

as a function of s at the k+ 1 points ti, . . . , ti+k. The elements of $k,t are called polynomial splines of order k with knot sequence t. Let τ := (τi) n 1 be a strictly increasing real sequence. As is shown in [12], there exists, for given f , exactly one s ∈ $k,t, such that s(τi) = f(τi), i = 1, . . . , n, if and only if Ni,k(τi) 6= 0, i = 1, . . . , n, i.e., if and only if ti < τi < ti+k, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2014

ISSN: 0377-0427

DOI: 10.1016/j.cam.2013.05.005